
Econ 714: Problem Set 2 - Solution1

1

(a) A competitive equilibrium under autarky is, for each country i = a, b, a
sequence of prices {pi1t, pist}∞t=0 for good 1 and a claim to a tree, a sequence
of returns {rit}∞t=0 for the risk-free bond, a goods allocation {ci1t, ci2t}∞t=0 and
an asset allocation {bit, sit} of bonds and shares in trees such that:
(i) The household allocation solves the household problem of maximizing
utility subject to the flow budget constraint (suppressing superscripts):

p1tc1t + c2t + pstst+1 +
1

1 + rt
bt+1 ≤ bt + (pst + p1te1t + 1) st (1)

(ii) The goods market clears (for all t, i = a, b):

ci1t = ei1t, ci2t = 1. (2)

(iii) The asset market clears (for all t, i = a, b):

bit = 0, sit = 1.

(b) Since the problem is Markov, we will find a Markov equilibrium and repre-
sent the optimization problem via dynamic programming, and hence drop
time subscripts. It is easiest if we define the state variable as a representative
agent’s wealth w, where:

w = b+ (ps + p1e1 + 1) s.

Then the budget constraint is:

p1c1 + c2 + pss
′ +

1

1 + r
b′ ≤ w. (3)

Then the Bellman equation is:

V (w) = max
c1,c2,s′,b′

{(
cα1 c

1−α
2

)1−γ
1− γ

+ βE (V (w′)|w)

}
(4)

subject to (3) and
w′ = b′ + (p′s + p′1e

′
1 + 1) s′. (5)

The algebra is easiest if we do not impose the constraint (3) but instead
let λ be the Lagrange multiplier on it. Then the first order and envelope
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conditions are:(
cα1 c

1−α
2

)−γ
αcα−11 c2

1−α = p1λ (6)(
cα1 c

1−α
2

)−γ
(1− α)cα1 c

−α
2 = λ (7)

psλ = βE (V ′(w′)(p′s + p′1e
′
1 + 1)|w) (8)

1

1 + r
λ = βE (V ′(w′)|w) (9)

V ′(w) = λ (10)

For later use, note that if we divide (6) by (7) we get an expression for p1:

p1 =
α

1− α
c2
c1
. (11)

Similarly, using (8), (9), and (10) we get Euler equations for the share price
and the risk free rate:

ps = βE

(
λ′

λ
(p′s + p′1e

′
1 + 1)

∣∣∣w) (12)

1

1 + r
= βE

(
λ′

λ

∣∣∣w) (13)

(c) Using our expressions above, these follow by imposing the autarkic equilib-
rium conditions. Using this in (7), (11)-(13) become:

p1 =
α

1− α
1

e1

ps = βE

((
e′1
e1

)α(1−γ)
(p′s + p′1e

′
1 + 1)

∣∣∣w)
1

1 + rA
= βE

((
e′1
e1

)α(1−γ) ∣∣∣w)
We can be a little more explicit in the expression for rA by using the struc-
ture of the endowments. In particular, in country a we get:

1

1 + raA
= β

(
p+ (1− p)

(
1− eh
eh

)α(1−γ))
if ea1 = eh

= β

(
p

(
eh

1− eh

)α(1−γ)
+ (1− p)

)
if ea1 = 1− eh

Similar expressions hold for country b, and the interest rates will vary across
countries and across states.

(d) Under free trade, the relevant goods market clearing conditions become:

ca1 + cb1 ≤ 1, ca2 + cb2 ≤ 2
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Notice in particular that there is no aggregate uncertainty and since we allow
for asset trade as well there are complete markets. Therefore (as we showed
in class) the equilibrium allocation will consist of constant consumption.
(The consumption shares are determined by the initial endowments, but we
don’t need them here.) Therefore from (7) we get λ′/λ = 1 and so (13)
implies:

1

1 + rif
= β.

This is clearly the same across countries, which must be the case by arbi-
trage.

(e) Since goods are traded freely across countries, this means that by arbitrage
we must have goods prices equalized at pa1 = pb1 = p1. The relevant goods
market clearing conditions are as in the previous part:

ca1 + cb1 ≤ 1, ca2 + cb2 ≤ 2, (14)

however since there is no trade in assets, there are separate asset market
clearing conditions for the two countries, as under autarky:

bit = 0, sit = 1.

(f) As the problem states, without international borrowing the additional con-
dition that an allocation must satisfy is, for i = a, b:

p1c
i
1 + ci2 = p1e

i
1 + 1.

Note also that from (11) we know that the equalization of the goods price
across countries implies that the ratio of c2/c1 is also equalized across coun-
tries. Using these conditions and the goods market clearing conditions (14)
at equality we find the price of good 1:

p1 =
2α

1− α
.

This in turn gives the consumption allocation:

ci1 = αei1 +
1

2
(1− α)

ci2 = 2αei1 + 1− α.

Using this allocation in (7) and (13) gives the expression for the risk-free
rates:

1

1 + rig
= βE

((
2α(ei1)′ + 1− α
2αei1 + 1− α

)−γ ∣∣∣ei1
)
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As before, we can use the structure of the problem to be a little more explicit
in the expressions. For country a we get:

1

1 + rag
= β

(
p+ (1− p)

(
2α(1− eh) + 1− α

2αeh + 1− α

)−γ)
if ea1 = eh

= β

(
p

(
2αeh + 1− α

2α(1− eh) + 1− α

)−γ
+ (1− p)

)
if ea1 = 1− eh

Similar expressions hold for country b, and the interest rates will vary across
countries and across states.

(g) Using the parameter values and our previous expressions, we get:

1

1 + raA
= β (p+ 3(1− p)) if ea1 = eh

= β

(
1

3
p+ (1− p)

)
if ea1 = 1− eh

1

1 + rag
=

1

1 + rf
= β

(
p+

(
5

3

)3

(1− p)

)
if ea1 = eh

= β

((
3

5

)3

p+ (1− p)

)
if ea1 = 1− eh

1

1 + raf
= β.

Since
(
5
3

)3
> 3 we find that interest rates are more volatile (lower in the

high state, and higher in the low state) when goods trade is allowed than
in autarky. Under these parameter values, the intertemporal elasticity of
substitution (1/γ) is rather low so that the smoothing of the consumption
allocation that comes with goods trade leads to more volatile asset prices
(through the volatility of marginal utility). The interesting thing is that
this is not monotone, as clearly there are no fluctuations in interest rates
when there is free trade in goods and assets.

2

(a) The Bellman equation is

V (k,G) = max
c

{
(cGη)

1−γ

1− γ
+ βV ((1− δ) k + f (k)− c,G′)

}
.

The first order and envelope coniditons are

(cGη)
−γ

Gη = βVk (k′, G′) (15)

Vk (k,G) = βVk (k′, G′) [(1− δ) + f ′ (k)]

= [(1− δ) + f ′ (k)] (cGη)
−γ

Gη. (16)
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Combining the two equations we get the Euler equation

(cGη)
−γ

Gη = β [(1− δ) + f ′ (k′)] (c′G′η)
−γ

G′η.

So we have the following dynamic system:

ct+1 = ct

(
Gt+1

Gt

)η 1−γ
γ

β
1
γ [(1− δ) + f ′ (kt+1)]

1
γ (17)

kt+1 = (1− δ) kt + f (kt)− ct. (18)

(b) If Gt grows at a constant rate g, i.e., Gt+1 = (1 + g)Gt, then (17) becomes

ct+1 = ct (1 + g)
η 1−γ

γ β
1
γ [(1− δ) + f ′ (kt+1)]

1
γ . (19)

At a steady state we have kt+1 = kt = kss and ct+1 = ct = css, so (18) and
(19) yield

f ′ (kss) =
(1 + g)

−η(1−γ)

β
− (1− δ)

css = f (kss)− δkss.

Assuming that f ′ > 0, and f ′′ < 0, which are necessary for a neoclassical
production function, the above steady state is unique, since f ′ is 1-to-1. In
this case the steady state is

kss = (f ′)
−1
(

(1 + g)
−η(1−γ)

β
− (1− δ)

)
(20)

css = f (kss)− δkss. (21)

(c) To see what happens in the short run we will need to write down the ∆c = 0
and ∆k = 0 curves. They are, respectively,

k = (f ′)
−1
(

(1 + g)
−η(1−γ)

β
− (1− δ)

)
(22)

c = f (k)− δk, (23)

where we have assumed that f ′ (·) is invertible. To see what happens in the
long run we will just need to look at the steady state. We have two cases:

i) η > 0:
From (22) we see that a higher g implies the ∆c = 0 line moves to the left,
while from (23) we see that the ∆k = 0 curve is unchanged. This is shown
in Figure 1.

Also directly from the above graph or from (20) we see that a higher g

implies a lower steady state stock of capital, since (f ′)
−1

(·) is decreasing,
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Figure 1: Effect of increase in g on the curves ∆c = 0 and ∆k = 0 and on the
saddle path, and transition from the old steady state to the new one, for η > 0.

Figure 2: Left: Evolution of k after increase in g, for η > 0. Right: Evolution
of c after increase in g, for η > 0.

and hence from (21) a lower steady state consumption. Combining all the
above, we can figure out the transition dynamics qualitatively. Assuming
that when the unexpected increase in g occurred, the economy was at a
steady state, the transition dynamics are given by the Figure 2.

ii) η < 0:
From (22) we see that a higher g implies the ∆c = 0 line moves to the right,
while from (23) we see that the ∆k = 0 curve is unchanged. This is shown
in Figure 3.

Also directly from the above graph or from (20) we see that a higher g

implies a higher steady state stock of capital, since (f ′)
−1

(·) is decreasing,
and hence from (21) a higher steady state consumption. Combining all the
above, we can figure out the transition dynamics qualitatively. Assuming
that when the unexpected increase in g occurred, the economy was at a
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Figure 3: Effect of increase in g on the curves ∆c = 0 and ∆k = 0 and on the
saddle path, and transition from the old steady state to the new one, for η < 0.

steady state, the transition dynamics are given by the Figure 4.

Figure 4: Left: Evolution of k after increase in g, for η < 0. Right: Evolution
of c after increase in g, for η < 0.

3

(a) Although households take prices, taxes and transfers as given, it must be
able to project next period’s prices and taxes in order to solve its problem.
So we need to introduce a perceived law of motion, which we do by assuming
rational expections. To do this, define the aggregate state as the vector
X = [K z].

A recursive competitive equilibrium (RCE) with a government is a value
function V (k;X), a set of decision rules {c(k;X), k′(k;X), n(k;X)}, a set
of prices {r(X), w(X)}, transfers {T (X)}, and a perceived law of motion
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for capital K ′(X), given the tax rate τ and transistion function P (z′, z) and
N = 1, such that

(i) Given prices, taxes, transfers and the law of motion, the decision rules
solve the household’s problem:

V (k;X) = max
c,k′

u(c) + β

∫
z′
V (k′;K ′(X), z′)dP (z, z′)

c+ k′ = (1− τ)(w(X)n+ r(X)k) + (1− δ)k + T (X)

(ii) For all X = [K z], (K,N) solves the representative firm’s problem
given prices:

zFK(K,N) = r(X)

zFN (K,N) = w(X)

(iii) For all X, the government balances budget:

T (X) = τ(w(X)N + r(X)K)

(iv) Markets clear, i.e. k′(k;X) = K ′(X) and n(k;X) = N = 1 for all
[k;X],

(v) k = K, i.e. aggregate state equals individual state. This is required
due to the representative agent setting.

(vi) The law of motion is induced by

K ′(X) = zF (K,N) + (1− δ)K − c(K;X) = k′(K;X),

(b) Given today’s aggregate state X and the law of motion K ′(X), the house-
hold rationally projects next period’s aggregate state as X ′ = [K ′(X), z′].
Since there is no preferences for leisure, n(k;X) = 1 for all k,X. To write
a FE in terms of k′(k;X), it will be easier to let the agent’s state variable
be his wealth, which in turn is a function of [k X]:

a(k;X) ≡ (1− τ)[w(X) + r(X)k] + (1− δ)k + T (X),

so from the perspective of the agent who chooses k′ but forecasts X ′, it
faces the individual law of motion:

a(k′;X ′) = (1− τ)[w(X ′) + r(X ′)k′] + (1− δ)k′ + T (X ′). (24)

Now let V (a(k;X), z) ≡ V (k;X), the Bellman equation for the HH is

V (a(k;X), z) = max
k′

{
u(a(k;X)− k′) + β

∫
z′
V (a(k′;X ′), z′)dP (z, z′)

}
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subject to the law of motion (24). The f.o.c. at the solution is

u′(a(k;X)− k′(k;X)) = β

∫
z′

[(1− τ)r(G(X), z′) + 1− δ] ·

Va(a(k′(k;X);X ′), z′)dP (z, z′)

and combining with the envelope condition

Va(a(k;X);X) = u′(a(k;X)− k′(k;X))

we get the Euler equation

u′(a(k;X)− k′(k;X)) = β

∫
z′

[(1− τ)r(X ′) + 1− δ] ·

u′ [a(k′(k;X);X ′)− k′(k′(k;X);X ′)] dP (z, z′).

Now being explicit about rational expectations and the individual’s state
variables, we rewrite

u′(a(k;K, z)− k′(k;K, z)) = β

∫
z′

[(1− τ)r(K ′(K, z), z′) + 1− δ]× (25)

u′ [a(k′(k;K, z);K ′(K, z), z′)− k′(k′(k;K, z);K ′(K, z), z′)] dP (z, z′).

Hence given a forecasting rule K ′(K, z), (25) defines a functional equation
for k′(k;K, z).

(c) From the firm’s f.o.c.’s, in equilibrium given that N = 1,

r(K, z) = zFK(K, 1)

w(K, z) = zFN (K, 1)

Now we know in equilibrium that k = K and k′(K;K, z) = K ′(K, z). So the
representative agent’s state in equilibrium is (assuming a HD1 technology)

a(k;K, z) = zF (K, 1) + (1− δ)K ≡ A(K, z)

and suppressing all the individual state variables in (25), we get

u′(A(K, z)−K ′(K, z)) = β

∫
z′

[(1− τ)z′FK(K ′(K, z), z′) + 1− δ] ·

u′ [A(K ′(K, z), z′)−K ′(K ′(K, z), z′)] dP (z, z′).

The whole idea is as follows. First, we can solve for K ′(K, z) from (a) to
get the aggregate law of motion. Then, plug this in the HH problem as
the forecast function for tomorrow’s aggregate capital, and solve out for
k′(k,K, z) such that k′(K,K, z) = K ′(K, z).
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(d) If δ = 1, the RCE law of motion satisfies

u′(A(K, z)−K ′(K, z)) = β̃

∫
z′
z′FK(K ′(K, z), z′)·

u′ [A(K ′(K, z), z′)−K ′(K ′(K, z), z′)] dP (z, z′).

where β̃ = β(1− τ). Hence the problem coincides with a planner’s problem
with discount factor β̃. The planner who internalizes government budget
balance would not choose the distorted allocation. But since taxes are
constant and δ = 1, the allocation coincides exactly with a planner who
faces a discount factor of β̃. So the distortionary tax has the effect of
making the economy act as if were more impatient, and hence reduces capital
accumulation (savings).

4

(a) By (t) denote function estimated with variables at time t.

From lecture notes, HH optimality conditions with capital and labor taxes
are:

uc(t) = βuc(t+ 1)[1 + (1− τkt+1)(rt+1 − δ)]
ul(t)

uc(t)
= (1− τnt )wt

Lagrangian of the HH problem with consumption tax:

L =
∑

βtu(ct, 1−nt)+λ
[∑

qt (wtnt + rtkt − (1 + τ ct )ct − kt+1 + (1− δ)kt)
]

First order conditions:

[ct] : βtuc(t) = λqt(1 + τ ct )

[nt] : βtul(t) = λqtwt

[kt+1] : qt = qt+1(1 + rt+1 − δ)

Substitute out λ to get

uc(t) = βuc(t+ 1)(1 + rt+1 − δ)
1 + τ ct

1 + τ ct+1

(EE)

ul(t)

uc(t)
=

wt
1 + τ ct

To induce the same allocation as with consumption tax, labor and capital
taxes must satisfy

1 + (1− τkt+1)(rt+1 − δ) = (1 + rt+1 − δ)
1 + τ ct

1 + τ ct+1

1− τnt =
1

1 + τ ct
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For any sequence τ ct , it is possible to construct sequences τnt and τkt that
will satisfy these conditions. In general, τkt will be a function of rt. In a
special case of τ ct = const, τkt = 0.

(b) With
1+τct+1

1+τct
= 1 + g and rt = Fk(t), (EE) becomes

(1 + g)uc(t) = βuc(t+ 1)(1 + Fk(t+ 1)− δ)

Steady state lines of the phase diagram then are:

[ct = ct+1] : 1 + g = β(1 + Fk(t+ 1)− δ)
[kt = kt+1] : ct = F (t)− δkt −G

Increase in g shifts the vertical ct = ct+1 line to the left, and increase in G
shifts the kt = kt+1 curve down. New steady state capital and consumption
levels are lower.

In transition, the system jumps to the new saddle path and converges to the
new steady state. Capital is gradually declining, and consumption starts
declining after initial jump. This initial jump can be positive or negative,
depending on whether the new saddle path is above or below the old steady
state.

(c) We will use primal approach. From HH FOCs and q0 = 1 get equations to
substitute out prices and taxes:

qt(1 + τ ct ) = βt
uc(t)

uc(0)
(1 + τ0) (26)

qtwt = βt
ul(t)

uc(0)
(1 + τ0) (27)

Using no arbitrage condition 1 + rt− δ = qt/qt+1, rewrite budget constraint
as ∑

qt((1 + τ ct )ct − wtnt) = q0k0(1 + r0 − δ)

With rt = Fk(t), q0 = 1 and equations (26) and (27) budget constraint
becomes ∑

βt(uc(t)ct − ul(t)nt) = k0(1 + Fk(0)− δ)

Now the Ramsey problem can be formulated as a choice of only allocations,
and the rest of its solution is identical with lecture notes. We cannot get
much further than FOC characterization without specific functional forms.

Denote by x̄ a steady state level of variable xt. From the solution of the
Ramsey problem one can obtain k̄, n̄ and c̄. Then w̄ = Fn(k̄, n̄). Divide
(26) by (27) to get

1 + τ ct
wt

=
uc(t)

ul(t)
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In steady state consumption tax is constant:

1 + τ ct = Fn(k̄, n̄)
uc(c̄, 1− n̄)

ul(c̄, 1− n̄)
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