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1 Introduction

Log-linearization is a solution to the problem of reducing computational complexity for

systems of numerically specified equations that need to be solved simultaneously. Such sys-

tems can be found in macroeconomics and, increasingly, also in microeconomics as numeri-

cal simulation methods are becoming more popular throughout economics. Log-linearization

converts a non-linear equation into an equation that is linear in terms of the log-deviations of

the associated variables from their steady state values. For small deviations from the steady

state, log-deviations have a convenient economic interpretation: they are approximately

equal to the percentage deviations from the steady state.

Log-linearization can greatly simplify the computational burden and, therefore, help solve

a model that may otherwise be intractable. To see the degree of simplification, take as an

example the equation

yt = sztk
α
t .

Log-linearization converts it into the form

eyt = ezt + αekt,
where the log-deviations from the steady state are identified with a tilde above the variable.

This paper is motivated by the fact that log-linearization methods are not well covered

in textbooks or other material for beginning graduate students. In fact, log-linearization

appears to be effectively absent from all popular textbooks on mathematical methods for

economists. When the material is mentioned in textbooks or discussion papers, its coverage

tends to be rather cryptic (Romer 2006) or limited (Heijdra and van der Ploeg 2002, Uhlig

1995). But most importantly, it is not clear what the logic is of using one as opposed to

another approach to finding log-deviations. This tends to leave beginning students confused

and ill prepared to applying these methods in practice. The intent of this paper is to bring

together all relevant methods of log-linearization, show their logic, contrast them, provide

pertinent examples, and provide students with some guidance on when and why a particular

approach works best.

The paper is organized as follows. The first section discusses some mathematical prelim-

inaries and the substitution method of log-linearizing an equation. This is a simple method

with minimal mathematical requirements. Next, this method is applied to various types

of equations to illustrate (a) its universal applicability and (b) how to overcome potential

stumbling blocks in practical applications. The following section discusses how log-linearizing
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equations can be made less tedious when it is combined with a Taylor series approximation.

The concluding section points out some limitations and extensions of log-linearization.

2 The substitution method

2.1 The required tools

To understand the mathematical logic of log-linearlization requires familiarity with taking

the derivative of exponential and logarithmic functions, and of Taylor series expansions.

As a reminder, the derivative of an exponential function equals the product of three items,

the exponential function itself, the derivative of the exponent with respect to the decision

variable, and the logarithm of the base of the exponential function.

Example 1 For the exponential function

f(x) = ceax,

these three components are

ceax, a, ln e,

where ln e = 1. Hence, the derivative of f with respect to x is given as

f 0(x) = aceax.

The derivative of the log function lnx is 1/x.

Example 2 The derivative of

g(x) = a ln bx2

is given by the chain rule as

g0(x) = a
1

bx2
2bx = 2

a

x
.

The first-order Taylor series approximation of the function h at x = a is given as

h (x) = h (a) + h0 (a) (x− a) .
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Example 3 The function h(x) = ln(1 + x) can be approximated at x = 2 by a first-order

Taylor polynomial as

h(x) ' ln 3 + 1
3
(x− 2) = 0.43195 + 0.3333x.

2.2 A basic result

Log-linearization means taking the log-deviation around a steady state value. Assume x

denotes the steady state value of variable xt. Next, define the log-deviation of variable xt
from its steady state x as

ext ≡ lnxt − lnx. (1)

The right hand side of equation 1 can be rewritten as

ln
³xt
x

´
= ln

µ
1 +

xt − x
x

¶
.

The log expression can be approximated by a first-order Taylor polynomial at the steady

state xt = x,

ln

µ
1 +

xt − x
x

¶
' ln 1 + 1

x
(xt − x) = xt − x

x
.

The result,

ext ≈ xt − x
x

=
xt
x
− 1, (2)

states that the log deviations of xt from its steady state value are approximately equal to

the percentage difference between xt and its steady state value. This approximation holds

for small deviations from the steady state, which highlights that log-linearization is a local

approximation method.

Depending on what equation needs to be transformed into log-deviations format, equation

2 can be rearranged into two equivalent expressions

xt
x
≈ 1 + ext (3)

xt ≈ x (1 + ext) . (4)

Equation 4 provides a means to convert equations in xt into equations in ext. Such simple
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substitution methods work well for linear equations.

Example 4 The national accounting identity of a closed economy without government,

yt = ct + it,

can be converted into log-deviations form by using equation 4. Direct application yields

y (1 + eyt) = c (1 + ect) + i³1 +eit´ .
Typically, one wants to simplify the resulting equation. This can be done by making use of

the steady state relationship that must hold for the given equation. In the present case, the

steady state relationship is

y = c+ i.

To make use of this relationship, multiply out the log-deviations equation,

y + yeyt = c+ cect + i+ ieit,
and subtract y on the left and (c+ i) on the right to obtain

yeyt = cect + ieit.
The final step is to divide both sides of the equation by y,

eyt = c

y
ect + i

y
eit.

Simple substitution methods as in example 4 do not work well if the equations are more

complicated, in particular if they involve variables with exponents or ratios of variables.

Therefore, it would be good to have an alternative method available that is applicable for

such more complicated equations.

2.3 A more general result

Start again with equation 1. But now solve the equation for xt by taking exponents,

lnxt = lnx+ ext
xt = elnx+ext = elnxeext = xeext. (5)
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Dividing through by x, equation 5 can be rewritten as

xt
x
= eext.

Up to this point no approximation is involved. Approximating the expression eext with a
first-order Taylor polynomial at the point ext = 0 yields

eext ' 1 + e0(ext − 0) = 1 + ext. (6)

Applying this approximation to equation 5 leads to

xt ' x (1 + ext)
xt
x
≈ 1 + ext,

which happens to be identical to equations 4 and 3, respectively. At this point, one may

wonder about the advantages of the derivation via exponentiation. After all, the end result

is the same as the one obtained in section 2.2. The advantage will become apparent for a

more complicated equation, such as the one posed in the introduction, which includes the

exponential term kαt .

Example 5 Converting kαt to log-deviations form via equation 5 yields

kαt =
³
ke
ekt´α = kαeαekt. (7)

Next, a first-order Taylor polynomial of the expression eαekt at the point ekt = 0 leads to
eα
ekt ' 1 + α(ekt − 0) = 1 + αekt. (8)

Substitution into equation 7 results in

kαt ' kα(1 + αekt). (9)

The crucial point to remember from the above example is that the exponent form of

the log-linearization procedure (equation 7) makes it possible to turn the exponent α into

a multiplier before the Taylor approximation is employed in equation 8. This simplification

is missed if the approximation of equation 4 is applied directly to the original function kαt .

The exponent form of the log-linearization procedure also works well on ratios of variables.
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Example 6 To convert the ratio expression xt/yt into log-deviations form, use equation 5,

xt
yt
=
xeext
yeeyt =

x

y
eexte−eyt.

Then apply the approximation of equation 6 to obtain

x

y
eexte−eyt ' x

y
(1 + ext) (1− eyt) .

Multiplying out leads to

x

y
(1 + ext − eyt − exteyt) .

This condenses to

x

y
(1 + ext − eyt)

because the term exteyt is the product of two small numbers and, hence, negligible.
The important point of the above example is that the exponent form of the log-linearization

procedure effectively eliminates the ratio before the Taylor approximation of equation 6 is

employed. This simplification is missed if the approximation of equation 4 is applied directly

to the given ratio xt/yt. The attentive reader will notice that example 6 is a corrollary of

example 5 because the ratio xt/yt can be rewritten in the format xty−1t .
1 This highlights that

the exponentiation procedure of equations 5 and 6 should always be employed if there is a

variable with exponent not equal to unity in an expression that needs to be converted to

log-deviations form.

3 Applications of the substitution method

3.1 Multiplicative equations

Consider the equation posed in the introduction,

yt = sztk
α
t . (10)

1Setting xt = 1 and α = −1 replicates example 5, with variable y substituting for variable k.
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To convert this equation into log-deviations format, apply the approximations from equations

4 and 7,

y (1 + eyt) = sz (1 + ezt) kα(1 + αekt). (11)

Next, utilize the equation for the steady state to simplify equation 11. The steady state

equation is given as

y = szkα. (12)

Dividing the left hand side of equation 11 by y and the right hand side by szkα generates

(1 + eyt) = (1 + ezt) (1 + αekt),
which can be solved for eyt,

eyt = 1 + ezt + αekt + αeztekt − 1.
As both ezt and ekt are by assumption close to zero, its product will be negligably different
from zero. Setting the product zero and simplifying yields the result

eyt = ezt + αekt. (13)

Equation 13 can be had somewhat faster by applying the definition of log-linearization

directly to equation 10. This involves two steps First, take the logarithm of equation 10,

ln yt = ln s+ ln zt + α ln kt.

Second, subtract the logarithm of the steady state of yt (equation 12) from the left and the

right sides,

ln yt − ln y = ln zt − ln z + α (ln kt − ln k) .

Employing the notation of equation (1), this yields the result

eyt = ezt + αekt.
The method of taking logs and then subtracting the log terms of the steady state equation is
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very convenient. However, it does not always work. It is only useful for multiplicative equa-

tions or those nearly so where taking the log removes exponents and converts multiplication

into addition to significantly simplify the equation.

3.2 Nearly multiplicative equations

A nearly multiplicative equation is given by

xt + a = (1− b)yt
zt
.

Taking the log on both sides,

ln (xt + a) = ln(1− b) + ln yt − ln zt,

and subtracting the log of the steady state equation,

ln (x+ a) = ln(1− b) + ln y − ln z,

results in

ln (xt + a)− ln (x+ a) = ln yt − ln y − (ln zt − ln z)gxt + a = eyt − ezt,
where the term (1−b) drops out because it does not depend on time. The resulting equation
contains the log-deviations of the term xt + a instead of the log-deviations of xt. Some

additional work is required to convert the former into the latter. For that purpose, employ

equation 2 for both gxt + a and ext,
gxt + a =

(xt + a)− (x+ a)
x+ a

=
xt − x
x+ aext =

xt − x
x

.

The numerators of the two equations are the same. Setting the numerator expressions equal

yields

(x+ a)
¡ gxt + a¢ = xext.
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Now solve for gxt + a in terms of ext,
gxt + a = x

x+ a
ext.

Hence, the final equation in log-deviations form is given as

x

x+ a
ext = eyt − ezt.

3.3 Equations with expectations terms

In general, the method of taking logs and then subtracting the log terms of the steady

state equation should not be used on equations that involve expectation terms, even when

the equation is multiplicative. This is because taking the expectation of a log term is not

the same as taking the log of an expectation term.2 Rather, one would use equations 5

and 6. This is demonstrated with the following equation, which is in the form of a typical

Euler equation that connects present and future consumption for an intertemporal utility

maximization problem,

1

ct
= βEt

·
(1 + rt+1)

ct+1

¸
,

where Et is an expectations operator. By equation 5, the individual components of the

equation can be replaced as follows,

(1 + rt+1) = (1 + r) e
g1+rt+1

ct = ceect
ct+1 = ceect+1 .

Substituting the above expressions gives

1

ceect = βEt

"
(1 + r) e

g1+rt+1
ceect+1

#
1

eect = β (1 + r)Et

Ã
e
g1+rt+1
eect+1

!
2This is the result of Jensen’s inequality, which implies ln(Ex) ≥ E lnx for the log function. Only for a

linear function f(x) is f(Ex) = Ef(x).
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e−ect = β (1 + r)Ete
g1+rt+1e−ect+1

1 = β (1 + r)Ete
g1+rt+1e−ect+1eect .

So far, no approximation has been applied. Employ now the approximation of equation 6 to

each one of the exponential terms,

1 = β (1 + r)Et
h³
1 + g1 + rt+1´ (1− ect+1) (1 + ect)i .

The bracket term on the right hand side needs to be multiplied out,

1 = β (1 + r)Et

Ã
1 + ect − ect+1 + g1 + rt+1 − ectect+1 − g1 + rt+1ect+1

+g1 + rt+1ect − g1 + rt+1ectect+1
!
.

The last four terms in parenthesis are products of log-deviations from steady state and,

therefore, very small. Setting them zero and removing the number one from the parenthesis

term yields

1 = β (1 + r) + β (1 + r)Et
³ect − ect+1 + g1 + rt+1´ .

Economic theory tells us that in steady state β = 1/(1 + r). Making use of this steady state

condition simplifies the equation to

0 = Et
³ect − ect+1 + g1 + rt+1´ .

The final step is the conversion of the term g1 + rt+1 into a term involving ert. Following the
example in the last section, we employ the approximation from equation 2 to obtain,

g1 + rt+1 ≈ 1 + rt+1 − (1 + r)
1 + r

=
rt+1 − r
1 + rert+1 ≈ rt+1 − r

r
.

Solving both equations for the numerator terms and setting them equal yields

(1 + r)
³ g1 + rt+1´ = rert+1
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or, when solved for g1 + rt+1,
g1 + rt+1 = µ r

1 + r

¶ert+1.
Substituting the result gives the final equation in log-deviations form,

0 = Et

·ect − ect+1 +µ r

1 + r

¶ert+1¸ .
3.4 Equations in logs

Macroeconomic models often contain log equations for stochastic technology shocks of

the type

ln zt = z0 + ρ ln zt−1 + ²t,

where ²t is a disturbance term. To convert to log-deviations format, replace the time sub-

scripted variables per equation 5,

ln zeezt = z0 + ρ ln zeezt−1 + ²t
ln z + ezt = z0 + ρ (ln z + ezt−1) + ²t.

Using knowledge about the steady state can simplify the above equation. In particular, in

steady state the following obtains,

ln z = z0 + ρ ln z.

By subtracting ln z on the left and (z0 + ρ ln z) on the right, the log equation simplifies to

ezt = ρezt−1 + ²t.
4 Log-linearizing via Taylor series approximation

So far, only simple algebraic substitutions have been used to derive equations in log-

deviations format. No more is required for any equation. However, the substitution method

via equations 5 and 6 may become rather time consuming to use for more complicated

equations. Significant time savings can typically be obtained by first using a Taylor series

approximation before applying the definitions of log-deviations.
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4.1 Univariate case

To see the logic of this method and its potential for time savings, consider the equation

xt+1 = f(xt),

where f is a possibly complicated nonlinear function. A first-order Taylor polynomial of this

equation at the steady state xt = x gives

xt+1 ≈ f(x) + f 0(x)(xt − x).

As x = f(x) in steady state, the equation can be rewritten as

xt+1 ≈ x+ f 0(x)(xt − x).

Dividing by x,

xt+1
x
≈ x
x
+ f 0(x)

(xt − x)
x

,

and employing equation 3 on the left and equation 2 on the right yields

1 + ext+1 = 1 + f 0(x)extext+1 = f 0(x)ext. (14)

Hence, log-linearization involves no more than taking the first derivative of the function

f(xt). To see this methodology in action, consider the following example.

Example 7 Assume an equation similar to the example given in the introduction,

kt+1 = sk
α
t + (1− δ)kt. (15)

As a first step in the conversion to log-deviations, a first-order Taylor series expansion at

the steady state kt = k results in

kt+1 ≈ [skα + (1− δ)k] +
£
αskα−1 + (1− δ)

¤
(kt − k).

In steady state, the equation k = skα + (1− δ)k holds. Therefore,

kt+1 ≈ k +
£
αskα−1 + (1− δ)

¤
(kt − k).
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Now divide by k,

kt+1
k
≈ 1 + £αskα−1 + (1− δ)

¤ (kt − k)
k

,

and use equations 3 and 2,

ekt+1 ≈ £αskα−1 + (1− δ)
¤ ekt. (16)

Equation 16 is the log-linearized version of equation 15.3 As usual, further simplifications of

equation 16 are possible by employing the steady state relationship,

k = skα + (1− δ)k.

In this case, it is convenient to solve the steady state equation for skα−1,

1 = skα−1 + (1− δ)

skα−1 = 1− (1− δ).

Replacing the term skα−1simplifies equation 16 to

ekt+1 ≈ [1− (1− α)δ]ekt.
4.2 Multivariate case

First-order Taylor approximations can also be used to convert equations with more than

one endogenous variable to log-deviations form. The result for two variables simply follows

the steps for the one-variable case in section 4.1. In particular, start with an equation like

xt+1 = g(xt, yt),

and employ a first-order Taylor approximation at the steady state values xt = x and yt = y,

xt+1 ≈ g(x, y) + g0x(x, y)(xt − x) + g0y(x, y)(yt − y). (17)

3Note that equation 16 can be obtained from equation 15 in one step simply be employing equation 14.
After all, the bracket term in equation 16 is nothing but the derivative of equation 15 with respect to kt,
evaluated at kt = k.
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In steady state,

x = g(x, y),

which can be used to rewrite equation 16 as

xt+1 ≈ x+ g0x(x, y)(xt − x) + g0y(x, y)(yt − y).

Dividing through by x and multiplying and dividing the last term on the right by y yields

xt+1
x
≈ 1 + g0x(x, y)

(xt − x)
x

+ g0y(x, y)
y

x

(yt − y)
y

.

Sequentially employing equations 3 and 2 and rearranging terms generates the following

sequence of equations,

1 + ext+1 ≈ 1 + g0x(x, y)ext + g0y(x, y)yxeytext+1 ≈ g0x(x, y)ext + g0y(x, y)yxeyt
xext+1 ≈ g0x(x, y)xext + g0y(x, y)yeyt. (18)

Example 8 A two-variable version of example 7 is given as

kt+1 = sztk
α
t + (1− δ)kt. (19)

The equation contains the variables kt and zt on the right hand side. Employing equation 18

directly to equation 19 and simplifying the result generates

kekt+1 ≈ £
αszkα−1 + (1− δ)

¤
kekt + (skα) zeztekt+1 ≈ £

αszkα−1 + (1− δ)
¤ ekt + ¡szkα−1¢ ezt. (20)

Again, the steady state relationship,

k = szkα + (1− δ)k

1 = szkα−1 + (1− δ),

can be used to further simplify equation 20,

ekt+1 ≈ [1− (1− α)δ]ekt + δezt.
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It is apparent that the use of the Taylor polynomial can significantly reduce the time

needed to generate the log-deviations form of more complicated equations. This applies, of

course, all the more if one makes use of equations 14 and 18 directly, rather than deriving

them from scratch on every new equation that needs to be log-linearized.

5 Conclusion

This paper has introduced the basic principles of log-linearizing equations. The main

purpose has been (a) to bring together in one place the methodology that can be found

scattered across various sources, (b) to illustrate with one consistent notation how the main

approaches relate to each other, and (c) to provide some guidelines, in conjunction with a

set of pertinent examples, of how the various methods are applied in practice.

The discussion in this paper has been limited to difference equations because difference

equations are currently much more popular in applied economics than differential equations.

It should be noted, however, that the methods covered here can be applied in only slightly

modified form also to differential equations.4

Finally, the reader needs to be cautioned that log-linearization, although a convenient

tool, is not an economically sensible simplification for all models. For example, if the vari-

ability of a random variable is important, such as in the modeling of risk, log-linearization is

not appropriate because only the mean of the random variable is considered by log-linearized

equations not its variance. Other methods of making equations computationally tractable

need to be employed in such cases. Perturbation methods and other techniques that make

use of higher order terms have gained popularity for this reason (Judd 1998, Miranda and

Fackler 2002). This is where the interested reader may want to turn next.
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