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The solutions to many discrete time dynamic economic problems take the form of a
system of non-linear di¤erence equations. There generally exists no closed-form solution for
such problems. As such, we must result to numerical and/or approximation techniques.
One particularly easy and very common approximation technique is that of log lineariza-

tion. We �rst take natural logs of the system of non-linear di¤erence equations. We then
linearize the logged di¤erence equations about a particular point (usually a steady state),
and simplify until we have a system of linear di¤erence equations where the variables of in-
terest are percentage deviations about a point (again, usually a steady state). Linearization
is nice because we know how to work with linear di¤erence equations. Putting things in
percentage terms (that�s the �log�part) is nice because it provides natural interpretations
of the units (i.e. everything is in percentage terms).
First consider some arbitrary univariate function, f(x). Taylor�s theorem tells us that

this can be expressed as a power series about a particular point x�, where x� belongs to the
set of possible x values:

f(x) = f(x�) +
f 0(x�)

1!
(x� x�) + f

00
(x�)

2!
(x� x�)2 + f

(3)(x�)

3!
(x� x�)3 + :::

Here f 0(x�) is the �rst derivative of f with respect to x evaluated at the point x�, f
00
(x�) is

the second derivative evaluated at the same point, f (3) is the third derivative, and so on. n!
reads �n factorial�and is equal to n! = n(n� 1)(n� 2) � ::: � 1. In words, the factorial of n is
the product of all non-negative integers less than or equal to n. Hence 1! = 1, 2! = 2 �1 = 2,
3! = 3 � 2 � 1 = 6, and so on.
For a function that is su¢ ciently smooth, the higher order derivatives will be small,

and the function can be well approximated (at least in the neighborhood of the point of
evaluation, x�) linearly as:

f(x) = f(x�) + f 0(x�) (x� x�)
Taylor�s theorem also applies equally well to multivariate functions. As an example,

suppose we have f(x; y). The �rst order approximation about the point (x�; y�) is:

f(x; y) � f(x�; y�) + fx(x�; y�) (x� x�) + fy(x�; y�) (y � y�)
Here fx denotes the partial derivative of the function with respect to x and similarly for

y.
Suppose that we have the following (non-linear) function:

f(x) =
g(x)

h(x)
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To log-linearize it, �rst take natural logs of both sides:

ln f(x) = ln g(x)� lnh(x)
Now use the �rst order Taylor series expansions:

ln f(x) � ln f(x�) +
f 0(x�)

f(x�)
(x� x�)

ln g(x) � ln g(x�) +
g0(x�)

g(x�)
(x� x�)

lnh(x) � lnh(x�) +
h0(x�)

h(x�)
(x� x�)

The above follows from the fact that d ln f(x)
dx

= f 0(x)
f(x)

. Now put these all together:

ln f(x�) +
f 0(x�)

f(x�)
(x� x�) = ln g(x�) + g

0(x�)

g(x�)
(x� x�)� lnh(x�)� h

0(x�)

h(x�)
(x� x�)

Group terms:

ln f(x�) +
f 0(x�)

f(x�)
(x� x�) = ln g(x�)� lnh(x�) + g

0(x�)

g(x�)
(x� x�)� h

0(x�)

h(x�)
(x� x�)

But since ln f(x�) = ln g(x�)� lnh(x�), these terms cancel out, leaving:

f 0(x�)

f(x�)
(x� x�) = g0(x�)

g(x�)
(x� x�)� h

0(x�)

h(x�)
(x� x�)

To put everything in percentage terms, multiply and divide each term by x�:

x�f 0(x�)

f(x�)

(x� x�)
x�

=
x�g0(x�)

g(x�)

(x� x�)
x�

� x
�h0(x�)

h(x�)

(x� x�)
x�

For notational ease, de�ne ex = (x�x�)
x� , or the percentage deviation of x about x�. Then

we have:

x�f 0(x�)

f(x�)
ex = x�g0(x�)

g(x�)
ex� x�h0(x�)

h(x�)
ex

The above discussion and general cookbook procedure applies equally well in multivariate
contexts. To summarize, the cookbook procedure for log-linearizing is:

1. Take logs

2. Do a �rst order Taylor series expansion about a point (usually a steady state)

3. Simplify so that everything is expressed in percentage deviations from steady state
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A number of examples arise in economics. I will log-linearize the following four examples:
(a) Cobb-Douglass production function; (b) accounting identity; (c) capital accumulation
equation; and (d) consumption Euler equation.

(a) Cobb-Douglass Production Function: Consider a Cobb-Douglas production func-
tion:

yt = atk
�
t n

1��
t

First take logs:

ln yt = ln at + � ln kt + (1� �) lnnt
Now do the Taylor series expansion about the steady state values:

ln y�+
1

y�
(yt�y�) = ln a�+

1

a�
(at�a�)+� ln k�+

�

k�
(kt�k�)+(1��) lnn�+

(1� �)
n�

(nt�n�)

As above, note that ln y� = ln a� + � ln k� + (1� �) lnn�, so these terms cancel:

1

y�
(yt � y�) =

1

a�
(at � a�) +

�

k�
(kt � k�) +

(1� �)
n�

(nt � n�)

Now using our de�nition of �tilde� variables being percentage deviations from steady
state, we have:

eyt = eat + �ekt + (1� �)ent
(b) Accounting Identity: Consider the closed economy accounting identity:

yt = ct + it

Take logs:

ln yt = ln (ct + it)

Now do the �rst order Taylor series expansion:

ln y� +
1

y�
(yt � y�) = ln (c� + i�) +

1

(c� + i�)
(ct � c�) +

1

(c� + i�)
(it � i�)

Now we have to �ddle with this a bit more than we did for the production function case.
First, note that ln (c� + i�) = ln y�, so that these terms cancel out:

1

y�
(yt � y�) =

1

(c� + i�)
(ct � c�) +

1

(c� + i�)
(it � i�)
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Now multiply and divide (so as to leave the expression unchanged) each of the two terms
on the right hand side by c� and i�, respectively:

1

y�
(yt � y�) =

c�

(c� + i�)

(ct � c�)
c�

+
i�

(c� + i�)

(it � i�)
i�

Now simplify and use our �tilde�notation:

eyt = c�

y�
ect + i�

y�
eit

(c) Capital Accumulation Equation: Consider the standard capital accumulation equa-
tion:

kt+1 = it + (1� �)kt
Take logs:

ln kt+1 = ln(it + (1� �)kt)
Do the �rst order Taylor series expansion:

ln k�+
1

k�
(kt+1 � k�) = ln(i�+(1��)k�)+

1

(i� + (1� �)k�)(it�i
�)+

(1� �)
(i� + (1� �)k�) (kt � k

�)

Now simplify terms a bit, noting that ln(i� + (1 � �)k�) = ln k�, so that again terms
cancel:

1

k�
(kt+1 � k�) =

1

k�
(it � i�) +

(1� �)
k�

(kt � k�)

Now multiply and divide the �rst term on the right hand side by i�:

1

k�
(kt+1 � k�) =

i�

k�
(it � i�)
i�

+
(1� �)
k�

(kt � k�)

Using our �tilde�notation:

ekt+1 = i�

k�
eit + (1� �)ekt

(d) Consumption Euler equation: Consider the standard consumption Euler equation
that emerges from household optimization problems with CRRA utility:�

ct+1
ct

��
= �(1 + rt)

� > 0 is the coe¢ cient of relative risk aversion. Take logs:

� ln ct+1 � � ln ct = ln � + ln(1 + rt)
Now do the �rst order Taylor series expansion:
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� ln c� +
�

c�
(ct+1 � c�)� � ln c� �

�

c�
(ct � c�) = ln � + ln(1 + r�) +

1

1 + r�
(rt � r�)

Some terms on the left hand side obviously cancel:

�

c�
(ct+1 � c�)�

�

c�
(ct � c�) = ln � + ln(1 + r�) +

1

1 + r�
(rt � r�)

Note that, in the steady state, 1 + r� = 1
�
, hence ln(1 + r�) = � ln �. Using this, we

have:

�

c�
(ct+1 � c�)�

�

c�
(ct � c�) =

1

1 + r�
(rt � r�)

There are two semi-standard things to do with the right hand side. First, since rt is
already a percent, it is common to leave it in absolute (as opposed to percentage) deviations.
Hence, we can de�ne ert = (rt � r�), while, for all other variables, like consumption, we use
the tilde notation to denote percentage deviations, so ect = (ct�c�)

c� , as before. Secondly, we
approximate the term 1

1+r� = 1. If the discount factor is su¢ ciently high, this will be a
good approximation. Then, simplifying, we can write:

ect+1 � ect = 1

�
ert

This says that the growth rate of consumption is approximately proportional to the
deviation of the real interest rate from steady state, with 1

�
interpreted as the elasticity of

intertemporal substitution.

5


