Econ 714: Handout 10 - Solution 1

1 Investment with adjustment costs and taxation²

Firm owns productive capital K_t that generates output $F(K_t)$ ($F_K > 0, F_{KK} \leq 0$) and evolves according to $K_{t+1} = (1 - \delta)K_t + I_t$. Output can be transformed into investment goods I_t one for one, but investment entails convex adjustment costs of $\Psi(I_t, K_t)$: $\Psi_I >$ $0, \Psi_{II} > 0, \Psi_K < 0, \Psi_{KK} > 0$ and $\Psi_I(\delta K, K) = 0$, i.e. marginal adjustment cost is zero when investment just replaces depreciating capital. One commonly used functional form is $\Psi(I, K) = \frac{psi_0}{2K}(I - \delta K)^2$.

Corporate profits are subject to taxation characterized by the following rules:

- Operating profit is taxed at rate τ .
- Depreciation allowance. Capital expenditures can be deducted from taxable profit at depreciation schedule D_s , where s = 0, 1, 2, ... is the number of periods since the capital was installed. Assume that D_s follows a simple linear rule: every period a constant fraction δ of the *initial* value of capital can be deducted, i.e. for tax purposes capital fully depreciates after $1/\delta$ periods.
- Investment tax credit: A fraction κ of capital expenditures can be subtracted from the tax bill immediately.
- Assume that the above rules symmetrically apply if before-tax profit is negative, in which case firm gets a refund.

Firm starts with initial level of capital K_0 and is choosing optimal investment policy to maximize present value of after-tax profits, discounted at interest rate r, $V(K_0)$.

1. Formulate firm's decision problem. Pay attention to all the tax rules.

$$V(K_0) = \max_{\{I_t, K_{t+1}\}} \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \left[(1-\tau) \left(F(K_t) - \Psi(I_t, K_t) \right) - (1-\kappa) I_t + \tau \sum_{s=0}^{\infty} D_s I_{t-s} \right]$$

s.t. $K_{t+1} = (1-\delta) K_t + I_t$

2. Denote the shadow value of capital by q_t . Write down the Lagrangian and characterize firm's optimal investment policy.

We can rearrange summation as

$$\sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \tau \sum_{s=0}^{\infty} D_s I_{t-s} = \sum_{t=0}^{\infty} z I_t + A_0,$$

where $z = \tau \sum_{s=0}^{\infty} \frac{D_s}{(1+r)^s}$ and $A_0 = \tau \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \tau \sum_{s=0}^{\infty} D_{-1-s} I_{-1-s}$. Note that A_0 is predetermined when decision is made at t = 0.

¹By Anton Babkin. This version: April 17, 2016.

 $^{^{2}}$ Adapted from Hayashi (1982) "Tobin's marginal q and average q: a neoclassical interpretation", Econometrica.

Rewrite the problem as

$$V(K_0) = \max_{\{I_t, K_{t+1}\}} \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \left[(1-\tau) \left(F(K_t) - \Psi(I_t, K_t) \right) - (1-\kappa-z)I_t \right] + A_0$$

s.t. $K_{t+1} = (1-\delta)K_t + I_t$

Lagrangian:

$$L = \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \left[(1-\tau) \left(F(K_t) - \Psi(I_t, K_t) \right) - (1-\kappa - z)I_t + q_t \left((1-\delta)K_t + I_t - K_{t+1} \right) \right] + A_0$$

Taking first order conditions

$$[I_t]: q_t - (1 - \kappa - z) = (1 - \tau)\Psi_I(I_t, K_t)$$

[K_{t+1}]: (1 + r)q_t = (1 - \tau)(F_K(K_{t+1}) - \Psi_K(I_{t+1}, K_{t+1})) + q_{t+1}(1 - \delta)

FOC in $[I_t]$ can be used to solve for optimal I_t as a function of current K_t and q_t .

3. Assume that firm starts at the steady state. Use phase diagram to describe firm behavior after an unanticipated policy change that allows to depreciate capital for tax purposes at a faster rate $\hat{\delta} > \delta$ (depreciation rule is still linear, and physical depreciation is not affected).

We will be building phase diagram in (K_t, q_t) space.

Rewrite FOCs as

$$K_{t+1} - K_t = \Psi_I^{-1}\left(\frac{q_t - (1 - \kappa - z)}{1 - \tau}, K_t\right) - \delta K_t$$
$$q_{t+1} - q_t = \delta q_{t+1} + rq_t - (1 - \tau)(F_K(K_{t+1}) - \Psi_K(I_{t+1}, K_{t+1}))$$

The expression for the $\Delta K = 0$ isocline is simply a horizontal line $q_t = 1 - \kappa - z$ because by assumption $\Psi_I(\delta K, K) = 0$. Ψ_I is increasing in first argument since $\Psi_{II} > 0$, so Ψ_I^{-1} is increasing too. Then if q_t is above $\Delta K = 0$ line $K_{t+1} - K_t > 0$, and below the line $K_{t+1} - K_t < 0$.

The expression for the $\Delta q = 0$ isocline is $q_t = \frac{1}{\delta + r}(1 - \tau)(F_K(K_{t+1}) - \Psi_K(I_{t+1}, K_{t+1}))$. It is a downward sloping line because by assumptions $F_{KK} \leq 0$ and $\Psi_{KK} > 0$. When q_t and K_t are big $q_{t+1} - q_t > 0$, and below the line $q_{t+1} - q_t < 0$.

Remember expression for present value of depreciation allowances: $z = \tau \sum_{s=0}^{\infty} \frac{D_s}{(1+r)^s}$. If D_s for smaller capital age s becomes larger, z increases.

Dynamics of the system after the shock is shown in Figure 1. q_t immediately jumps down to the new saddle path, and system gradually converges to the new steady state with higher level of capital.

4. (Hayashi theorem). Show that if F(K) and $\Psi(I, K)$ are linearly homogenuous, then Tobin's marginal q and average $Q \equiv V/K$ are related as $q = Q + \hat{A}$, where \hat{A} is a constant.

Rewrite the FOC in $[K_{t+1}]$ multiplied by K_{t+1} :

Figure 1: Phase diagram of the increase in z.

$$(1+r)q_t K_{t+1} = (1-\tau)(F_K(t+1)K_{t+1} - \Psi_K(t+1)K_{t+1}) + q_{t+1}K_{t+1}(1-\delta)$$

By Euler theorem $F(K) = F_K K$ and $\Psi(I, K) = \Psi_I I + \Psi_K K$. Use this to manipulate the above equation:

$$(1+r)q_t K_{t+1} = (1-\tau)(F(t+1) - (\Psi(t+1) - \Psi_I(t+1)I_{t+1}) + q_{t+1}K_{t+1}(1-\delta))$$
$$(1+r)q_t K_{t+1} = (1-\tau)(F(t+1) - \Psi(t+1)) + (1-\tau)\Psi_I(t+1)I_{t+1} + q_{t+1}K_{t+1}(1-\delta))$$

Substitute $(1 - \tau)\Psi_I(t + 1)$ from the FOC in $[I_t]$:

$$\begin{aligned} (1+r)q_t K_{t+1} &= (1-\tau)(F(t+1) - \Psi(t+1)) + (q_{t+1} - (1-\kappa-z))I_{t+1} + q_{t+1}K_{t+1}(1-\delta) \\ (1+r)q_t K_{t+1} &= (1-\tau)(F(t+1) - \Psi(t+1)) - (1-\kappa-z))I_{t+1} + q_{t+1}(I_{t+1} + K_{t+1}(1-\delta)) \\ (1+r)q_t K_{t+1} &= (1-\tau)(F(t+1) - \Psi(t+1)) - (1-\kappa-z))I_{t+1} + q_{t+1}K_{t+1} \\ q_t K_{t+1} &= \frac{1}{1+r} \left[(1-\tau)(F(t+1) - \Psi(t+1)) - (1-\kappa-z))I_{t+1} + q_{t+1}K_{t+2} \right] \end{aligned}$$

Substitute $q_t K_{t+1}$ forward recursively:

$$q_0 K_1 = \sum_{t=1}^{\infty} \frac{1}{(1+r)^t} \left[(1-\tau) \left(F(K_t) - \Psi(I_t, K_t) \right) - (1-\kappa - z) I_t \right] + A_1 + \lim_{T \to \infty} \frac{1}{(1+r)^T} q_T K_{T+1}$$
$$= \frac{1}{(1+r)} V(K_1) - A_1$$

So $q_0 = \frac{1}{(1+r)}V(K_1)/K_1 - A_1/K_1 = \frac{1}{(1+r)}Q_1 - A_1/K_1.$

This is as close as I could get to the original result by Hayashi which was proved in continuous time.

5. Describe a way to test the model with a simple OLS regression if you observed K_t, I_t and market value of firms. What would happen if you didn't include taxation rules into the model, or if assumptions of part 4 did not hold?

Let the adjustment cost function take the form $\Psi(I, K) = \frac{psi_0}{2K}(I - \delta K)^2$. The the FOC in $[I_t]$ becomes

$$(1-\tau)\psi_0(\frac{I_t}{K_t}-\delta)=q_t-(1-\kappa-z)$$

Rearrange to get a regression equation:

$$\frac{I_t}{K_t} = \delta + \frac{1}{\psi_0} \tilde{q_t},$$

where $\tilde{q}_t = \frac{q_t - (1 - \kappa - z)}{(1 - \tau)}$. Applying Hayashi theorem, q_t is estimated as $q_t = Q_t + A_t/K_t$, where $Q_{\equiv} \frac{V_t}{K_t}$ is the Tobin's average q.

If one simply used an OLS regression to estimate

$$\frac{I_t}{K_t} = \delta + \frac{1}{\psi_0} Q_t,$$

estimates would be biased as $Q_t \neq q_t$.