Econ 714: Handout 10^{-1}

1 Investment with adjustment costs and taxation²

Firm owns productive capital K_t that generates output $F(K_t)$ ($F_K > 0, F_{KK} \leq 0$) and evolves according to $K_{t+1} = (1 - \delta)K_t + I_t$. Output can be transformed into investment goods I_t one for one, but investment entails convex adjustment costs of $\Psi(I_t, K_t)$: $\Psi_I >$ $0, \Psi_{II} > 0, \Psi_K < 0, \Psi_{KK} > 0$ and $\Psi_I(\delta K, K) = 0$, i.e. marginal adjustment cost is zero when investment just replaces depreciating capital. One commonly used functional form is $\Psi(I, K) = \frac{psi_0}{2K}(I - \delta K)^2$.

Corporate profits are subject to taxation characterized by the following rules:

- Operating profit is taxed at rate τ .
- Depreciation allowance. Capital expenditures can be deducted from taxable profit at depreciation schedule D_s , where s = 0, 1, 2, ... is the number of periods since the capital was installed. Assume that D_s follows a simple linear rule: every period a constant fraction δ of the *initial* value of capital can be deducted, i.e. for tax purposes capital fully depreciates after $1/\delta$ periods.
- Investment tax credit: A fraction κ of capital expenditures can be subtracted from the tax bill immediately.
- Assume that the above rules symmetrically apply if before-tax profit is negative, in which case firm gets a refund.

Firm starts with initial level of capital K_0 and is choosing optimal investment policy to maximize present value of after-tax profits, discounted at interest rate r, $V(K_0)$.

- 1. Formulate firm's decision problem. Pay attention to all the tax rules.
- 2. Denote the shadow value of capital by q_t . Write down the Lagrangian and characterize firm's optimal investment policy.
- 3. Assume that firm starts at the steady state. Use phase diagram to describe firm behavior after an unanticipated policy change that allows to depreciate capital for tax purposes at a faster rate $\hat{\delta} > \delta$ (depreciation rule is still linear, and physical depreciation is not affected).
- 4. (Hayashi theorem). Show that if F(K) and $\Psi(I, K)$ are linearly homogenuous, then Tobin's marginal q and average $Q \equiv V/K$ are related as $q = Q + \hat{A}$, where \hat{A} is a constant.
- 5. Describe a way to test the model with a simple OLS regression if you observed K_t, I_t and market value of firms. What would happen if you didn't include taxation rules into the model, or if assumptions of part 4 did not hold?

¹By Anton Babkin. This version: April 17, 2016.

 $^{^2 {\}rm Adapted}$ from Hayashi (1982) "Tobin's marginal q and average q: a neoclassical interpretation", Econometrica.