Macro prelim solutions - August 2013^{1}

Disclaimer: These are unofficial solutions, they might have errors and be incomplete. Your comments and corrections are welcome.

Question 1.A.

I am getting the opposite result in this problem: risk-free interest rate rises over time.
(a) Recursive formulation of agent's problem:

$$
\begin{aligned}
V\left(a_{t}, A_{t}, b_{t}\right)=\max \log \left(c_{t}\right) & +\beta \mathbb{E}_{t} V\left(a_{t+1}, A_{t+1}, b_{t+1}\right) \\
\text { s.t. } c_{t}+p_{t} a_{t+1}+P_{t} A_{t+1}+q_{t} b_{t+1} & =\left(p_{t}+d_{t}\right) a_{t}+\left(P_{t}+D_{t}\right) A_{t}+b_{t}
\end{aligned}
$$

where asset a_{t} has price p_{t} and pays stochastic dividend d_{t}, asset A_{t} has price P_{t} and pays constant dividend $D_{t}=d_{0}$, and b_{t} is a risk-free bond with price q_{t}.
Recursive competitive equilibrium is sequence of quantities $c_{t}, a_{t}, A_{t}, b_{t}$ and prices p_{t}, P_{t}, q_{t} such that:

- $c_{t}, a_{t}, A_{t}, b_{t}$ solve agent's problem taking prices as given,
- markets clear: $a_{t}=1, A_{t}=1, b_{t}=0$ and $c_{t}=d_{t}+D_{t}$.

It is not necessary to introduce risk-free bond into the model, risk-free rate can be computed without it using pricing kernel.
(b) Standard asset pricing Euler equations:

$$
\begin{gathered}
p_{t}=\beta \mathbb{E}_{t} \frac{c_{t}}{c_{t+1}}\left(p_{t+1}+d_{t+1}\right) \\
P_{t}=\beta \mathbb{E}_{t} \frac{c_{t}}{c_{t+1}}\left(P_{t+1}+D_{t+1}\right) \\
q_{t}=\beta \mathbb{E}_{t} \frac{c_{t}}{c_{t+1}}
\end{gathered}
$$

With market clearing conditions, risk-free bond price is

$$
q_{t}=\beta \mathbb{E}_{t} \frac{d_{t}+D_{t}}{d_{t+1}+D_{t+1}}=\beta \mathbb{E}_{t} \frac{d_{t}+d_{0}}{d_{t+1}+d_{0}}
$$

Using law of motion for $d_{t}, E_{t}\left(f\left(d_{t+1}\right)\right)=\pi f\left(d_{t}(1+\delta)\right)+(1-\pi) f\left(d_{t}\right)$. Then

$$
\begin{aligned}
q_{t} & =\beta\left[\pi \frac{d_{t}+d_{0}}{d_{t}(1+\delta)+d_{0}}+(1-\pi) \frac{d_{t}+d_{0}}{d_{t}+d_{0}}\right] \\
& =\beta\left[\pi \frac{d_{t}+d_{0}}{d_{t}(1+\delta)+d_{0}}+(1-\pi)\right] \\
& =\beta\left[\pi \frac{d_{t}(1+\delta)+d_{0}-d_{t} \delta}{d_{t}(1+\delta)+d_{0}}+(1-\pi)\right] \\
& =\beta\left[1-\pi \frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}\right]
\end{aligned}
$$

[^0]In expectation as of $t=0$, future change in price is

$$
\begin{aligned}
& \mathbb{E}_{0}\left[q_{t+1}-q_{t}\right]= \mathbb{E}_{0}\left[\mathbb{E}_{t}\left[q_{t+1}-q_{t}\right]\right] \\
&=\mathbb{E}_{0}\left[\mathbb{E}_{t}\left(\beta\left[1-\pi \frac{d_{t+1} \delta}{d_{t+1}(1+\delta)+d_{0}}\right]\right)-\beta\left[1-\pi \frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}\right]\right] \\
&=\mathbb{E}_{0}\left[\beta \pi\left(\frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}-\mathbb{E}_{t}\left[\frac{d_{t+1} \delta}{d_{t+1}(1+\delta)+d_{0}}\right]\right)\right] \\
&= \mathbb{E}_{0}\left[\beta \pi\left(\frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}-\pi \frac{d_{t} \delta(1+\delta)}{d_{t}(1+\delta)^{2}+d_{0}}-(1-\pi) \frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}\right)\right] \\
&= \mathbb{E}_{0}\left[\beta \pi^{2}\left(\frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}-\frac{d_{t} \delta(1+\delta)}{d_{t}(1+\delta)^{2}+d_{0}}\right)\right] \\
&=\mathbb{E}_{0}\left[\beta \pi^{2}\left(\frac{d_{t} \delta(1+\delta)}{d_{t}(1+\delta)^{2}+d_{0}(1+\delta)}-\frac{d_{t} \delta(1+\delta)}{d_{t}(1+\delta)^{2}+d_{0}}\right)\right] \\
& d_{t}(1+\delta)^{2}+d_{0}(1+\delta)>d_{t}(1+\delta)^{2}+d_{0} \\
& \frac{d_{t} \delta(1+\delta)}{d_{t}(1+\delta)^{2}+d_{0}(1+\delta)}<\frac{d_{t} \delta(1+\delta)}{d_{t}(1+\delta)^{2}+d_{0}} \\
& \mathbb{E}_{0}\left[q_{t+1}-q_{t}\right]<0
\end{aligned}
$$

$\mathbb{E}_{0} q_{t+1}<\mathbb{E}_{0} q_{t}$, risk-free bond price q_{t} falls over time in expectation, so risk-free interest rate increases over time. Intuitively, asset a is becoming more and more valuable over time as it pays increasing dividend, so return on an alternative asset such as risk-free bond b must be also increasing so that it's market clears in equilibrium.
(c) Using the law of iterated expectations,

$$
\begin{aligned}
\mathbb{E}_{0} d_{t} & =\mathbb{E}_{0} \mathbb{E}_{t-1} d_{t} \\
& =\mathbb{E}_{0} d_{t-1}(\pi(1+\delta)+(1-\pi)) \\
& =\mathbb{E}_{0} \mathbb{E}_{t-2} d_{t-1}(1+\pi \delta) \\
& =\mathbb{E}_{0} d_{t-2}(1+\pi \delta)^{2} \\
& \cdots \\
& =d_{0}(1+\pi \delta)^{t}
\end{aligned}
$$

So $\lim _{t \rightarrow \infty} \mathbb{E}_{0} d_{t}=\infty$, in expectation dividend grows without bound.
Then the limit of the bond price is:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{E}_{0} q_{t} & =\lim _{t \rightarrow \infty} \mathbb{E}_{0} \beta\left[1-\pi \frac{d_{t} \delta}{d_{t}(1+\delta)+d_{0}}\right] \\
& =\lim _{t \rightarrow \infty} \mathbb{E}_{0} \beta\left[1-\pi \frac{\delta}{(1+\delta)+d_{0} / d_{t}}\right] \\
& =\beta\left[1-\pi \frac{\delta}{1+\delta}\right]<\beta
\end{aligned}
$$

So in the limit the risk-free rate is $>1 / \beta$.
(d) Iterating Euler equation forward and assuming no-bubble equilibrium, obtain

$$
\begin{aligned}
\frac{p_{t}}{d_{t}} & =\mathbb{E}_{t} \sum_{j=1}^{\infty} \beta^{j} \frac{d_{t}+d_{0}}{d_{t+j}+d_{0}} \frac{d_{t+j}}{d_{t}} \\
& =\frac{d_{t}+d_{0}}{d_{t}} \mathbb{E}_{t} \sum_{j=1}^{\infty} \beta^{j} \frac{d_{t+j}}{d_{t+j}+d_{0}}
\end{aligned}
$$

As t increases, $\frac{d_{t}+d_{0}}{d_{t}}$ decreases at a decelerating rate. So the term $\frac{d_{t}+d_{0}}{d_{t}}$ decreases faster than each of the $\frac{d_{t+j}}{d_{t+j}+d_{0}}$ terms is increasing. Then price to dividend ratio is declining. In the limit $d_{t+j} \approx d_{t+j}+d_{0}$, so

$$
\lim _{t \rightarrow \infty} \mathbb{E}_{0} \frac{p_{t}}{d_{t}}=\sum_{j=1}^{\infty} \beta^{j}=\frac{\beta}{1-\beta}
$$

[^0]: ${ }^{1}$ By Anton Babkin. This version: May 26, 2016.

